NutzCN Logo
问答 线程安全的LRUHashMap分析
发布于 2953天前 作者 qq_B961929188CCD397673F9505827728CB 3811 次浏览 复制 上一个帖子 下一个帖子
标签:

package org.nutz.dao;

import java.io.IOException;
import java.io.Serializable;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.locks.ReentrantLock;

/**
* 基于ConcurrentHashMap修改的LRUMap
*
* @author noah
*
* @param
* @param
*/
public class ConcurrentLRUHashMap<K, V> extends AbstractMap<K, V> implements
ConcurrentMap<K, V>, Serializable {

    /*
     * The basic strategy is to subdivide the table among Segments, each of
     * which itself is a concurrently readable hash table.
     */

    /* ---------------- Constants -------------- */

    /**
     * 
     */
    private static final long serialVersionUID = -5031526786765467550L;

    /**
     * Segement默认最大数
     */
    static final int DEFAULT_SEGEMENT_MAX_CAPACITY = 100;

    /**
     * The default load factor for this table, used when not otherwise specified
     * in a constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The default concurrency level for this table, used when not otherwise
     * specified in a constructor.
     */
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * The maximum capacity, used if a higher value is implicitly specified by
     * either of the constructors with arguments. MUST be a power of two <=
     * 1<<30 to ensure that entries are indexable using ints.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The maximum number of segments to allow; used to bound constructor
     * arguments.
     */
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

    /**
     * Number of unsynchronized retries in size and containsValue methods before
     * resorting to locking. This is used to avoid unbounded retries if tables
     * undergo continuous modification which would make it impossible to obtain
     * an accurate result.
     */
    static final int RETRIES_BEFORE_LOCK = 2;

    /* ---------------- Fields -------------- */

    /**
     * Mask value for indexing into segments. The upper bits of a key's hash
     * code are used to choose the segment.
     */
    final int segmentMask;

    /**
     * Shift value for indexing within segments.
     */
    final int segmentShift;

    /**
     * The segments, each of which is a specialized hash table
     */
    final Segment<K, V>[] segments;

    transient Set<K> keySet;
    transient Set<Map.Entry<K, V>> entrySet;
    transient Collection<V> values;

    /* ---------------- Small Utilities -------------- */

    /**
     * Applies a supplemental hash function to a given hashCode, which defends
     * against poor quality hash functions. This is critical because
     * ConcurrentHashMap uses power-of-two length hash tables, that otherwise
     * encounter collisions for hashCodes that do not differ in lower or upper
     * bits.
     */
    private static int hash(int h) {
            // Spread bits to regularize both segment and index locations,
            // using variant of single-word Wang/Jenkins hash.
            h += (h << 15) ^ 0xffffcd7d;
            h ^= (h >>> 10);
            h += (h << 3);
            h ^= (h >>> 6);
            h += (h << 2) + (h << 14);
            return h ^ (h >>> 16);
    }

    /**
     * Returns the segment that should be used for key with given hash
     * 
     * @param hash
     *            the hash code for the key
     * @return the segment
     */
    final Segment<K, V> segmentFor(int hash) {
            return segments[(hash >>> segmentShift) & segmentMask];
    }

    /* ---------------- Inner Classes -------------- */

    /**
     * 修改原HashEntry,
     */
    static final class HashEntry<K, V> {
            /**
             * 键
             */
            final K key;

            /**
             * hash值
             */
            final int hash;

            /**
             * 值
             */
            volatile V value;

            /**
             * hash链指针
             */
            final HashEntry<K, V> next;

            /**
             * 双向链表的下一个节点
             */
            HashEntry<K, V> linkNext;

            /**
             * 双向链表的上一个节点
             */
            HashEntry<K, V> linkPrev;

            /**
             * 死亡标记
             */
            AtomicBoolean dead;

            HashEntry(K key, int hash, HashEntry<K, V> next, V value) {
                    this.key = key;
                    this.hash = hash;
                    this.next = next;
                    this.value = value;
                    dead = new AtomicBoolean(false);
            }

            @SuppressWarnings("unchecked")
            static final <K, V> HashEntry<K, V>[] newArray(int i) {
                    return new HashEntry[i];
            }
    }

    /**
     * 基于原Segment修改,内部实现一个双向列表
     * 
     * @author noah
     * 
     * @param <K>
     * @param <V>
     */
    static final class Segment<K, V> extends ReentrantLock implements Serializable {
            /*
             * Segments maintain a table of entry lists that are ALWAYS kept in a
             * consistent state, so can be read without locking. Next fields of
             * nodes are immutable (final). All list additions are performed at the
             * front of each bin. This makes it easy to check changes, and also fast
             * to traverse. When nodes would otherwise be changed, new nodes are
             * created to replace them. This works well for hash tables since the
             * bin lists tend to be short. (The average length is less than two for
             * the default load factor threshold.)
             * 
             * Read operations can thus proceed without locking, but rely on
             * selected uses of volatiles to ensure that completed write operations
             * performed by other threads are noticed. For most purposes, the
             * "count" field, tracking the number of elements, serves as that
             * volatile variable ensuring visibility. This is convenient because
             * this field needs to be read in many read operations anyway:
             * 
             * - All (unsynchronized) read operations must first read the "count"
             * field, and should not look at table entries if it is 0.
             * 
             * - All (synchronized) write operations should write to the "count"
             * field after structurally changing any bin. The operations must not
             * take any action that could even momentarily cause a concurrent read
             * operation to see inconsistent data. This is made easier by the nature
             * of the read operations in Map. For example, no operation can reveal
             * that the table has grown but the threshold has not yet been updated,
             * so there are no atomicity requirements for this with respect to
             * reads.
             * 
             * As a guide, all critical volatile reads and writes to the count field
             * are marked in code comments.
             */

            private static final long serialVersionUID = 2249069246763182397L;

            /**
             * The number of elements in this segment's region.
             */
            transient volatile int count;

            /**
             * Number of updates that alter the size of the table. This is used
             * during bulk-read methods to make sure they see a consistent snapshot:
             * If modCounts change during a traversal of segments computing size or
             * checking containsValue, then we might have an inconsistent view of
             * state so (usually) must retry.
             */
            transient int modCount;

            /**
             * The table is rehashed when its size exceeds this threshold. (The
             * value of this field is always <tt>(int)(capacity *
             * loadFactor)</tt>.)
             */
            transient int threshold;

            /**
             * The per-segment table.
             */
            transient volatile HashEntry<K, V>[] table;

            /**
             * The load factor for the hash table. Even though this value is same
             * for all segments, it is replicated to avoid needing links to outer
             * object.
             * 
             * @serial
             */
            final float loadFactor;

            /**
             * 头节点
             */
            transient final HashEntry<K, V> header;

            /**
             * Segement最大容量
             */
            final int maxCapacity;

            Segment(int maxCapacity, float lf, ConcurrentLRUHashMap<K, V> lruMap) {
                    this.maxCapacity = maxCapacity;
                    loadFactor = lf;
                    setTable(HashEntry.<K, V> newArray(maxCapacity));
                    header = new HashEntry<K, V>(null, -1, null, null);
                    header.linkNext = header;
                    header.linkPrev = header;
            }

            @SuppressWarnings("unchecked")
            static final <K, V> Segment<K, V>[] newArray(int i) {
                    return new Segment[i];
            }

            /**
             * Sets table to new HashEntry array. Call only while holding lock or in
             * constructor.
             */
            void setTable(HashEntry<K, V>[] newTable) {
                    threshold = (int) (newTable.length * loadFactor);
                    table = newTable;
            }

            /**
             * Returns properly casted first entry of bin for given hash.
             */
            HashEntry<K, V> getFirst(int hash) {
                    HashEntry<K, V>[] tab = table;
                    return tab[hash & (tab.length - 1)];
            }

            /**
             * Reads value field of an entry under lock. Called if value field ever
             * appears to be null. This is possible only if a compiler happens to
             * reorder a HashEntry initialization with its table assignment, which
             * is legal under memory model but is not known to ever occur.
             */
            V readValueUnderLock(HashEntry<K, V> e) {
                    lock();
                    try {
                            return e.value;
                    } finally {
                            unlock();
                    }
            }

            /* Specialized implementations of map methods */

            V get(Object key, int hash) {
                    lock();
                    try {
                            if (count != 0) { // read-volatile
                                    HashEntry<K, V> e = getFirst(hash);
                                    while (e != null) {
                                            if (e.hash == hash && key.equals(e.key)) {
                                                    V v = e.value;
                                                    // 将节点移动到头节点之前
                                                    moveNodeToHeader(e);
                                                    if (v != null)
                                                            return v;
                                                    return readValueUnderLock(e); // recheck
                                            }
                                            e = e.next;
                                    }
                            }
                            return null;
                    } finally {
                            unlock();
                    }
            }

            /**
             * 将节点移动到头节点之前
             * 
             * @param entry
             */
            void moveNodeToHeader(HashEntry<K, V> entry) {
                    // 先移除,然后插入到头节点的前面
                    removeNode(entry);
                    addBefore(entry, header);
            }

            /**
             * 将第一个参数代表的节点插入到第二个参数代表的节点之前
             * 
             * @param newEntry
             *            需要插入的节点
             * @param entry
             *            被插入的节点
             */
            void addBefore(HashEntry<K, V> newEntry, HashEntry<K, V> entry) {
                    newEntry.linkNext = entry;
                    newEntry.linkPrev = entry.linkPrev;
                    entry.linkPrev.linkNext = newEntry;
                    entry.linkPrev = newEntry;
            }

            /**
             * 从双向链中删除该Entry
             * 
             * @param entry
             */
            void removeNode(HashEntry<K, V> entry) {
                    entry.linkPrev.linkNext = entry.linkNext;
                    entry.linkNext.linkPrev = entry.linkPrev;
            }

            boolean containsKey(Object key, int hash) {
                    lock();
                    try {
                            if (count != 0) { // read-volatile
                                    HashEntry<K, V> e = getFirst(hash);
                                    while (e != null) {
                                            if (e.hash == hash && key.equals(e.key)) {
                                                    moveNodeToHeader(e);
                                                    return true;
                                            }

                                            e = e.next;
                                    }
                            }
                            return false;
                    } finally {
                            unlock();
                    }
            }

            boolean containsValue(Object value) {
                    lock();
                    try {
                            if (count != 0) { // read-volatile
                                    HashEntry<K, V>[] tab = table;
                                    int len = tab.length;
                                    for (int i = 0; i < len; i++) {
                                            for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) {
                                                    V v = e.value;
                                                    if (v == null) // recheck
                                                            v = readValueUnderLock(e);
                                                    if (value.equals(v)) {
                                                            moveNodeToHeader(e);
                                                            return true;
                                                    }

                                            }
                                    }
                            }
                            return false;
                    } finally {
                            unlock();
                    }
            }

            boolean replace(K key, int hash, V oldValue, V newValue) {
                    lock();
                    try {
                            HashEntry<K, V> e = getFirst(hash);
                            while (e != null && (e.hash != hash || !key.equals(e.key)))
                                    e = e.next;

                            boolean replaced = false;
                            if (e != null && oldValue.equals(e.value)) {
                                    replaced = true;
                                    e.value = newValue;
                                    // 移动到头部
                                    moveNodeToHeader(e);
                            }
                            return replaced;
                    } finally {
                            unlock();
                    }
            }

            V replace(K key, int hash, V newValue) {
                    lock();
                    try {
                            HashEntry<K, V> e = getFirst(hash);
                            while (e != null && (e.hash != hash || !key.equals(e.key)))
                                    e = e.next;

                            V oldValue = null;
                            if (e != null) {
                                    oldValue = e.value;
                                    e.value = newValue;
                                    // 移动到头部
                                    moveNodeToHeader(e);
                            }
                            return oldValue;
                    } finally {
                            unlock();
                    }
            }

            V put(K key, int hash, V value, boolean onlyIfAbsent) {
                    lock();
                    try {
                            int c = count;
                            if (c++ > threshold) // ensure capacity
                                    rehash();
                            HashEntry<K, V>[] tab = table;
                            int index = hash & (tab.length - 1);
                            HashEntry<K, V> first = tab[index];
                            HashEntry<K, V> e = first;
                            while (e != null && (e.hash != hash || !key.equals(e.key)))
                                    e = e.next;

                            V oldValue = null;
                            if (e != null) {
                                    oldValue = e.value;
                                    if (!onlyIfAbsent) {
                                            e.value = value;
                                            // 移动到头部
                                            moveNodeToHeader(e);
                                    }
                            } else {
                                    oldValue = null;
                                    ++modCount;
                                    HashEntry<K, V> newEntry = new HashEntry<K, V>(key, hash, first, value);
                                    tab[index] = newEntry;
                                    count = c; // write-volatile
                                    // 添加到双向链
                                    addBefore(newEntry, header);
                                    // 判断是否达到最大值
                                    removeEldestEntry();
                            }
                            return oldValue;
                    } finally {
                            unlock();
                    }
            }

            void rehash() {
                    HashEntry<K, V>[] oldTable = table;
                    int oldCapacity = oldTable.length;
                    if (oldCapacity >= MAXIMUM_CAPACITY)
                            return;

                    /*
                     * Reclassify nodes in each list to new Map. Because we are using
                     * power-of-two expansion, the elements from each bin must either
                     * stay at same index, or move with a power of two offset. We
                     * eliminate unnecessary node creation by catching cases where old
                     * nodes can be reused because their next fields won't change.
                     * Statistically, at the default threshold, only about one-sixth of
                     * them need cloning when a table doubles. The nodes they replace
                     * will be garbage collectable as soon as they are no longer
                     * referenced by any reader thread that may be in the midst of
                     * traversing table right now.
                     */

                    HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1);
                    threshold = (int) (newTable.length * loadFactor);
                    int sizeMask = newTable.length - 1;
                    for (int i = 0; i < oldCapacity; i++) {
                            // We need to guarantee that any existing reads of old Map can
                            // proceed. So we cannot yet null out each bin.
                            HashEntry<K, V> e = oldTable[i];

                            if (e != null) {
                                    HashEntry<K, V> next = e.next;
                                    int idx = e.hash & sizeMask;

                                    // Single node on list
                                    if (next == null)
                                            newTable[idx] = e;

                                    else {
                                            // Reuse trailing consecutive sequence at same slot
                                            HashEntry<K, V> lastRun = e;
                                            int lastIdx = idx;
                                            for (HashEntry<K, V> last = next; last != null; last = last.next) {
                                                    int k = last.hash & sizeMask;
                                                    if (k != lastIdx) {
                                                            lastIdx = k;
                                                            lastRun = last;
                                                    }
                                            }
                                            newTable[lastIdx] = lastRun;

                                            // Clone all remaining nodes
                                            for (HashEntry<K, V> p = e; p != lastRun; p = p.next) {
                                                    int k = p.hash & sizeMask;
                                                    HashEntry<K, V> n = newTable[k];
                                                    HashEntry<K, V> newEntry = new HashEntry<K, V>(
                                                                    p.key, p.hash, n, p.value);
                                                    // update by Noah
                                                    newEntry.linkNext = p.linkNext;
                                                    newEntry.linkPrev = p.linkPrev;
                                                    newTable[k] = newEntry;
                                            }
                                    }
                            }
                    }
                    table = newTable;
            }

            /**
             * Remove; match on key only if value null, else match both.
             */
            V remove(Object key, int hash, Object value) {
                    lock();
                    try {
                            int c = count - 1;
                            HashEntry<K, V>[] tab = table;
                            int index = hash & (tab.length - 1);
                            HashEntry<K, V> first = tab[index];
                            HashEntry<K, V> e = first;
                            while (e != null && (e.hash != hash || !key.equals(e.key)))
                                    e = e.next;

                            V oldValue = null;
                            if (e != null) {
                                    V v = e.value;
                                    if (value == null || value.equals(v)) {
                                            oldValue = v;
                                            // All entries following removed node can stay
                                            // in list, but all preceding ones need to be
                                            // cloned.
                                            ++modCount;
                                            HashEntry<K, V> newFirst = e.next;
                                            for (HashEntry<K, V> p = first; p != e; p = p.next) {
                                                    newFirst = new HashEntry<K, V>(p.key, p.hash,
                                                                    newFirst, p.value);
                                                    newFirst.linkNext = p.linkNext;
                                                    newFirst.linkPrev = p.linkPrev;
                                            }
                                            tab[index] = newFirst;
                                            count = c; // write-volatile
                                            // 移除节点
                                            removeNode(e);
                                    }
                            }
                            return oldValue;
                    } finally {
                            unlock();
                    }
            }

            /**
             * 移除最旧元素
             */
            void removeEldestEntry() {
                    if (count > this.maxCapacity) {
                            HashEntry<K, V> eldest = header.linkNext;
                            remove(eldest.key, eldest.hash, null);
                    }
            }

            void clear() {
                    if (count != 0) {
                            lock();
                            try {
                                    HashEntry<K, V>[] tab = table;
                                    for (int i = 0; i < tab.length; i++)
                                            tab[i] = null;
                                    ++modCount;
                                    count = 0; // write-volatile
                            } finally {
                                    unlock();
                            }
                    }
            }
    }

    /**
     * 使用指定参数,创建一个ConcurrentLRUHashMap
     * 
     * @param segementCapacity
     *            Segement最大容量
     * @param loadFactor
     *            加载因子
     * @param concurrencyLevel
     *            并发级别
     */
    public ConcurrentLRUHashMap(int segementCapacity, float loadFactor,
                    int concurrencyLevel) {
            if (!(loadFactor > 0) || segementCapacity < 0 || concurrencyLevel <= 0)
                    throw new IllegalArgumentException();

            if (concurrencyLevel > MAX_SEGMENTS)
                    concurrencyLevel = MAX_SEGMENTS;

            // Find power-of-two sizes best matching arguments
            int sshift = 0;
            int ssize = 1;
            while (ssize < concurrencyLevel) {
                    ++sshift;
                    ssize <<= 1;
            }
            segmentShift = 32 - sshift;
            segmentMask = ssize - 1;
            this.segments = Segment.newArray(ssize);

            for (int i = 0; i < this.segments.length; ++i)
                    this.segments[i] = new Segment<K, V>(segementCapacity, loadFactor, this);
    }

    /**
     * 使用指定参数,创建一个ConcurrentLRUHashMap
     * 
     * @param segementCapacity
     *            Segement最大容量
     * @param loadFactor
     *            加载因子
     */
    public ConcurrentLRUHashMap(int segementCapacity, float loadFactor) {
            this(segementCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
    }

    /**
     * 使用指定参数,创建一个ConcurrentLRUHashMap
     * 
     * @param segementCapacity
     *            Segement最大容量
     */
    public ConcurrentLRUHashMap(int segementCapacity) {
            this(segementCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }

    /**
     * 使用默认参数,创建一个ConcurrentLRUHashMap,存放元素最大数默认为1000, 加载因子为0.75,并发级别16
     */
    public ConcurrentLRUHashMap() {
            this(DEFAULT_SEGEMENT_MAX_CAPACITY, DEFAULT_LOAD_FACTOR,
                            DEFAULT_CONCURRENCY_LEVEL);
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     * 
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
    public boolean isEmpty() {
            final Segment<K, V>[] segments = this.segments;
            /*
             * We keep track of per-segment modCounts to avoid ABA problems in which
             * an element in one segment was added and in another removed during
             * traversal, in which case the table was never actually empty at any
             * point. Note the similar use of modCounts in the size() and
             * containsValue() methods, which are the only other methods also
             * susceptible to ABA problems.
             */
            int[] mc = new int[segments.length];
            int mcsum = 0;
            for (int i = 0; i < segments.length; ++i) {
                    if (segments[i].count != 0)
                            return false;
                    else
                            mcsum += mc[i] = segments[i].modCount;
            }
            // If mcsum happens to be zero, then we know we got a snapshot
            // before any modifications at all were made. This is
            // probably common enough to bother tracking.
            if (mcsum != 0) {
                    for (int i = 0; i < segments.length; ++i) {
                            if (segments[i].count != 0 || mc[i] != segments[i].modCount)
                                    return false;
                    }
            }
            return true;
    }

    /**
     * Returns the number of key-value mappings in this map. If the map contains
     * more than <tt>Integer.MAX_VALUE</tt> elements, returns
     * <tt>Integer.MAX_VALUE</tt>.
     * 
     * @return the number of key-value mappings in this map
     */
    public int size() {
            final Segment<K, V>[] segments = this.segments;
            long sum = 0;
            long check = 0;
            int[] mc = new int[segments.length];
            // Try a few times to get accurate count. On failure due to
            // continuous async changes in table, resort to locking.
            for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
                    check = 0;
                    sum = 0;
                    int mcsum = 0;
                    for (int i = 0; i < segments.length; ++i) {
                            sum += segments[i].count;
                            mcsum += mc[i] = segments[i].modCount;
                    }
                    if (mcsum != 0) {
                            for (int i = 0; i < segments.length; ++i) {
                                    check += segments[i].count;
                                    if (mc[i] != segments[i].modCount) {
                                            check = -1; // force retry
                                            break;
                                    }
                            }
                    }
                    if (check == sum)
                            break;
            }
            if (check != sum) { // Resort to locking all segments
                    sum = 0;
                    for (int i = 0; i < segments.length; ++i)
                            segments[i].lock();
                    for (int i = 0; i < segments.length; ++i)
                            sum += segments[i].count;
                    for (int i = 0; i < segments.length; ++i)
                            segments[i].unlock();
            }
            if (sum > Integer.MAX_VALUE)
                    return Integer.MAX_VALUE;
            else
                    return (int) sum;

    }

    /**
     * Returns the value to which the specified key is mapped, or {@code null}
     * if this map contains no mapping for the key.
     * 
     * <p>
     * More formally, if this map contains a mapping from a key {@code k} to a
     * value {@code v} such that {@code key.equals(k)}, then this method returns
     * {@code v}; otherwise it returns {@code null}. (There can be at most one
     * such mapping.)
     * 
     * @throws NullPointerException
     *             if the specified key is null
     */
    public V get(Object key) {
            int hash = hash(key.hashCode());
            return segmentFor(hash).get(key, hash);
    }

    /**
     * Tests if the specified object is a key in this table.
     * 
     * @param key
     *            possible key
     * @return <tt>true</tt> if and only if the specified object is a key in
     *         this table, as determined by the <tt>equals</tt> method;
     *         <tt>false</tt> otherwise.
     * @throws NullPointerException
     *             if the specified key is null
     */
    public boolean containsKey(Object key) {
            int hash = hash(key.hashCode());
            return segmentFor(hash).containsKey(key, hash);
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the specified
     * value. Note: This method requires a full internal traversal of the hash
     * table, and so is much slower than method <tt>containsKey</tt>.
     * 
     * @param value
     *            value whose presence in this map is to be tested
     * @return <tt>true</tt> if this map maps one or more keys to the specified
     *         value
     * @throws NullPointerException
     *             if the specified value is null
     */
    public boolean containsValue(Object value) {
            if (value == null)
                    throw new NullPointerException();

            // See explanation of modCount use above

            final Segment<K, V>[] segments = this.segments;
            int[] mc = new int[segments.length];

            // Try a few times without locking
            for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
                    int mcsum = 0;
                    for (int i = 0; i < segments.length; ++i) {
                            mcsum += mc[i] = segments[i].modCount;
                            if (segments[i].containsValue(value))
                                    return true;
                    }
                    boolean cleanSweep = true;
                    if (mcsum != 0) {
                            for (int i = 0; i < segments.length; ++i) {
                                    if (mc[i] != segments[i].modCount) {
                                            cleanSweep = false;
                                            break;
                                    }
                            }
                    }
                    if (cleanSweep)
                            return false;
            }
            // Resort to locking all segments
            for (int i = 0; i < segments.length; ++i)
                    segments[i].lock();
            boolean found = false;
            try {
                    for (int i = 0; i < segments.length; ++i) {
                            if (segments[i].containsValue(value)) {
                                    found = true;
                                    break;
                            }
                    }
            } finally {
                    for (int i = 0; i < segments.length; ++i)
                            segments[i].unlock();
            }
            return found;
    }

    /**
     * Legacy method testing if some key maps into the specified value in this
     * table. This method is identical in functionality to
     * {@link #containsValue}, and exists solely to ensure full compatibility
     * with class {@link java.util.Hashtable}, which supported this method prior
     * to introduction of the Java Collections framework.
     * 
     * @param value
     *            a value to search for
     * @return <tt>true</tt> if and only if some key maps to the <tt>value</tt>
     *         argument in this table as determined by the <tt>equals</tt>
     *         method; <tt>false</tt> otherwise
     * @throws NullPointerException
     *             if the specified value is null
     */
    public boolean contains(Object value) {
            return containsValue(value);
    }

    /**
     * Put一个键值,加Map锁
     */
    public V put(K key, V value) {
            if (value == null)
                    throw new NullPointerException();
            int hash = hash(key.hashCode());
            return segmentFor(hash).put(key, hash, value, false);
    }

    /**
     * Put一个键值,如果该Key不存在的话
     */
    public V putIfAbsent(K key, V value) {
            if (value == null)
                    throw new NullPointerException();
            int hash = hash(key.hashCode());
            return segmentFor(hash).put(key, hash, value, true);
    }

    /**
     * Copies all of the mappings from the specified map to this one. These
     * mappings replace any mappings that this map had for any of the keys
     * currently in the specified map.
     * 
     * @param m
     *            mappings to be stored in this map
     */
    public void putAll(Map<? extends K, ? extends V> m) {
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
                    put(e.getKey(), e.getValue());
    }

    /**
     * Removes the key (and its corresponding value) from this map. This method
     * does nothing if the key is not in the map.
     * 
     * @param key
     *            the key that needs to be removed
     * @return the previous value associated with <tt>key</tt>, or <tt>null</tt>
     *         if there was no mapping for <tt>key</tt>
     * @throws NullPointerException
     *             if the specified key is null
     */
    public V remove(Object key) {
            int hash = hash(key.hashCode());
            return segmentFor(hash).remove(key, hash, null);
    }

    /**
     * {@inheritDoc}
     * 
     * @throws NullPointerException
     *             if the specified key is null
     */
    public boolean remove(Object key, Object value) {
            int hash = hash(key.hashCode());
            if (value == null)
                    return false;
            return segmentFor(hash).remove(key, hash, value) != null;
    }

    /**
     * {@inheritDoc}
     * 
     * @throws NullPointerException
     *             if any of the arguments are null
     */
    public boolean replace(K key, V oldValue, V newValue) {
            if (oldValue == null || newValue == null)
                    throw new NullPointerException();
            int hash = hash(key.hashCode());
            return segmentFor(hash).replace(key, hash, oldValue, newValue);
    }

    /**
     * {@inheritDoc}
     * 
     * @return the previous value associated with the specified key, or
     *         <tt>null</tt> if there was no mapping for the key
     * @throws NullPointerException
     *             if the specified key or value is null
     */
    public V replace(K key, V value) {
            if (value == null)
                    throw new NullPointerException();
            int hash = hash(key.hashCode());
            return segmentFor(hash).replace(key, hash, value);
    }

    /**
     * Removes all of the mappings from this map.
     */
    public void clear() {
            for (int i = 0; i < segments.length; ++i)
                    segments[i].clear();
    }

    /**
     * Returns a {@link Set} view of the keys contained in this map. The set is
     * backed by the map, so changes to the map are reflected in the set, and
     * vice-versa. The set supports element removal, which removes the
     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
     * <tt>addAll</tt> operations.
     * 
     * <p>
     * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will
     * never throw {@link ConcurrentModificationException}, and guarantees to
     * traverse elements as they existed upon construction of the iterator, and
     * may (but is not guaranteed to) reflect any modifications subsequent to
     * construction.
     */
    public Set<K> keySet() {
            Set<K> ks = keySet;
            return (ks != null) ? ks : (keySet = new KeySet());
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are reflected
     * in the collection, and vice-versa. The collection supports element
     * removal, which removes the corresponding mapping from this map, via the
     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, <tt>removeAll</tt>,
     * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not support
     * the <tt>add</tt> or <tt>addAll</tt> operations.
     * 
     * <p>
     * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will
     * never throw {@link ConcurrentModificationException}, and guarantees to
     * traverse elements as they existed upon construction of the iterator, and
     * may (but is not guaranteed to) reflect any modifications subsequent to
     * construction.
     */
    public Collection<V> values() {
            Collection<V> vs = values;
            return (vs != null) ? vs : (values = new Values());
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map. The set
     * is backed by the map, so changes to the map are reflected in the set, and
     * vice-versa. The set supports element removal, which removes the
     * corresponding mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
     * <tt>addAll</tt> operations.
     * 
     * <p>
     * The view's <tt>iterator</tt> is a "weakly consistent" iterator that will
     * never throw {@link ConcurrentModificationException}, and guarantees to
     * traverse elements as they existed upon construction of the iterator, and
     * may (but is not guaranteed to) reflect any modifications subsequent to
     * construction.
     */
    public Set<Map.Entry<K, V>> entrySet() {
            Set<Map.Entry<K, V>> es = entrySet;
            return (es != null) ? es : (entrySet = new EntrySet());
    }

    /**
     * Returns an enumeration of the keys in this table.
     * 
     * @return an enumeration of the keys in this table
     * @see #keySet()
     */
    public Enumeration<K> keys() {
            return new KeyIterator();
    }

    /**
     * Returns an enumeration of the values in this table.
     * 
     * @return an enumeration of the values in this table
     * @see #values()
     */
    public Enumeration<V> elements() {
            return new ValueIterator();
    }

    /* ---------------- Iterator Support -------------- */

    abstract class HashIterator {
            int nextSegmentIndex;
            int nextTableIndex;
            HashEntry<K, V>[] currentTable;
            HashEntry<K, V> nextEntry;
            HashEntry<K, V> lastReturned;

            HashIterator() {
                    nextSegmentIndex = segments.length - 1;
                    nextTableIndex = -1;
                    advance();
            }

            public boolean hasMoreElements() {
                    return hasNext();
            }

            final void advance() {
                    if (nextEntry != null && (nextEntry = nextEntry.next) != null)
                            return;

                    while (nextTableIndex >= 0) {
                            if ((nextEntry = currentTable[nextTableIndex--]) != null)
                                    return;
                    }

                    while (nextSegmentIndex >= 0) {
                            Segment<K, V> seg = segments[nextSegmentIndex--];
                            if (seg.count != 0) {
                                    currentTable = seg.table;
                                    for (int j = currentTable.length - 1; j >= 0; --j) {
                                            if ((nextEntry = currentTable[j]) != null) {
                                                    nextTableIndex = j - 1;
                                                    return;
                                            }
                                    }
                            }
                    }
            }

            public boolean hasNext() {
                    return nextEntry != null;
            }

            HashEntry<K, V> nextEntry() {
                    if (nextEntry == null)
                            throw new NoSuchElementException();
                    lastReturned = nextEntry;
                    advance();
                    return lastReturned;
            }

            public void remove() {
                    if (lastReturned == null)
                            throw new IllegalStateException();
                    ConcurrentLRUHashMap.this.remove(lastReturned.key);
                    lastReturned = null;
            }
    }

    final class KeyIterator extends HashIterator implements Iterator<K>,
                    Enumeration<K> {
            public K next() {
                    return super.nextEntry().key;
            }

            public K nextElement() {
                    return super.nextEntry().key;
            }
    }

    final class ValueIterator extends HashIterator implements Iterator<V>,
                    Enumeration<V> {
            public V next() {
                    return super.nextEntry().value;
            }

            public V nextElement() {
                    return super.nextEntry().value;
            }
    }

    /**
     * Custom Entry class used by EntryIterator.next(), that relays setValue
     * changes to the underlying map.
     */
    final class WriteThroughEntry extends AbstractMap.SimpleEntry<K, V> {
            /**
             * 
             */
            private static final long serialVersionUID = -2545938966452012894L;

            WriteThroughEntry(K k, V v) {
                    super(k, v);
            }

            /**
             * Set our entry's value and write through to the map. The value to
             * return is somewhat arbitrary here. Since a WriteThroughEntry does not
             * necessarily track asynchronous changes, the most recent "previous"
             * value could be different from what we return (or could even have been
             * removed in which case the put will re-establish). We do not and
             * cannot guarantee more.
             */
            public V setValue(V value) {
                    if (value == null)
                            throw new NullPointerException();
                    V v = super.setValue(value);
                    ConcurrentLRUHashMap.this.put(getKey(), value);
                    return v;
            }
    }

    final class EntryIterator extends HashIterator implements
                    Iterator<Entry<K, V>> {
            public Map.Entry<K, V> next() {
                    HashEntry<K, V> e = super.nextEntry();
                    return new WriteThroughEntry(e.key, e.value);
            }
    }

    final class KeySet extends AbstractSet<K> {
            public Iterator<K> iterator() {
                    return new KeyIterator();
            }

            public int size() {
                    return ConcurrentLRUHashMap.this.size();
            }

            public boolean contains(Object o) {
                    return ConcurrentLRUHashMap.this.containsKey(o);
            }

            public boolean remove(Object o) {
                    return ConcurrentLRUHashMap.this.remove(o) != null;
            }

            public void clear() {
                    ConcurrentLRUHashMap.this.clear();
            }
    }

    final class Values extends AbstractCollection<V> {
            public Iterator<V> iterator() {
                    return new ValueIterator();
            }

            public int size() {
                    return ConcurrentLRUHashMap.this.size();
            }

            public boolean contains(Object o) {
                    return ConcurrentLRUHashMap.this.containsValue(o);
            }

            public void clear() {
                    ConcurrentLRUHashMap.this.clear();
            }
    }

    final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
            public Iterator<Map.Entry<K, V>> iterator() {
                    return new EntryIterator();
            }

            public boolean contains(Object o) {
                    if (!(o instanceof Map.Entry))
                            return false;
                    Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                    V v = ConcurrentLRUHashMap.this.get(e.getKey());
                    return v != null && v.equals(e.getValue());
            }

            public boolean remove(Object o) {
                    if (!(o instanceof Map.Entry))
                            return false;
                    Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                    return ConcurrentLRUHashMap.this.remove(e.getKey(), e.getValue());
            }

            public int size() {
                    return ConcurrentLRUHashMap.this.size();
            }

            public void clear() {
                    ConcurrentLRUHashMap.this.clear();
            }
    }

    /* ---------------- Serialization Support -------------- */

    /**
     * Save the state of the <tt>ConcurrentHashMap</tt> instance to a stream
     * (i.e., serialize it).
     * 
     * @param s
     *            the stream
     * @serialData the key (Object) and value (Object) for each key-value
     *             mapping, followed by a null pair. The key-value mappings are
     *             emitted in no particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s) throws IOException {
            s.defaultWriteObject();

            for (int k = 0; k < segments.length; ++k) {
                    Segment<K, V> seg = segments[k];
                    seg.lock();
                    try {
                            HashEntry<K, V>[] tab = seg.table;
                            for (int i = 0; i < tab.length; ++i) {
                                    for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) {
                                            s.writeObject(e.key);
                                            s.writeObject(e.value);
                                    }
                            }
                    } finally {
                            seg.unlock();
                    }
            }
            s.writeObject(null);
            s.writeObject(null);
    }

    /**
     * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a stream (i.e.,
     * deserialize it).
     * 
     * @param s
     *            the stream
     */
    @SuppressWarnings("unchecked")
    private void readObject(java.io.ObjectInputStream s) throws IOException,
                    ClassNotFoundException {
            s.defaultReadObject();

            // Initialize each segment to be minimally sized, and let grow.
            for (int i = 0; i < segments.length; ++i) {
                    segments[i].setTable(new HashEntry[1]);
            }

            // Read the keys and values, and put the mappings in the table
            for (;;) {
                    K key = (K) s.readObject();
                    V value = (V) s.readObject();
                    if (key == null)
                            break;
                    put(key, value);
            }
    }

}

1 回复

定义了一个map :
private ConcurrentLRUHashMap<String, ReentrantLock> lockMap = new ConcurrentLRUHashMap<String, ReentrantLock>() ;

ConcurrentLRUHashMap中 Segment继承ReentrantLock,代码如下:
static final class Segment<K, V> extends ReentrantLock

同时N次 lockMap.get("abc")是会被锁住的,
而同时调用 lockMap.get("abc"),lockMap.get("abcd"),lockMap.get("abcde"),lockMap.get("abcdef")不一定会被锁住

求验证

添加回复
请先登陆
回到顶部